Problem 54

Suppose $[V]=\mathrm{L}^{3},[\rho]=\mathrm{ML}^{-3}$, and $[t]=\mathrm{T}$. (a) What is the dimension of $\int \rho d V$? (b) What is the dimension of $d V / d t$? (c) What is the dimension of $\rho(d V / d t)$?

Solution

Part (a)
Consider the dimensions of this expression.

$$
\begin{aligned}
{\left[\int \rho d V\right] } & =[\rho][V] \\
& =\left(\mathrm{ML}^{-3}\right) \cdot \mathrm{L}^{3} \\
& =\mathrm{M}
\end{aligned}
$$

Part (b)
Consider the dimensions of this expression.

$$
\begin{aligned}
{\left[\frac{d V}{d t}\right] } & =\frac{[d V]}{[d t]} \\
& =\frac{\mathrm{L}^{3}}{\mathrm{~T}} \\
& =\mathrm{L}^{3} \mathrm{~T}^{-1}
\end{aligned}
$$

Part (c)
Consider the dimensions of this expression.

$$
\begin{aligned}
{\left[\rho \frac{d V}{d t}\right] } & =[\rho]\left[\frac{d V}{d t}\right] \\
& =[\rho] \frac{[d V]}{[d t]} \\
& =\left(\mathrm{ML}^{-3}\right) \cdot \frac{\mathrm{L}^{3}}{\mathrm{~T}} \\
& =\mathrm{MT}^{-1}
\end{aligned}
$$

